DNV·GL

LNG and Alternate Fuels

Energy Transition Outlook 2019- MARITIME FORECAST TO 2050

PORTCON 2019 LA Long Beach - Annual Update Conference of the Certified Port Executive Program

Transitions in maritime

1

Greenhouse gases and global warming - a global challenge

GHG emissions

Carbon intensity is measured as CO₂ emission per tonne-mile, while Total is the absolute GHG emission from international shipping.

Adoption of Alternative fuel (Number of ships -in operation and on order)

• Scrubber • LNG • Battery • LNG ready • Methanol • LPG • Hydrogen (3)

Demand for seaborne transport will grow 39% by 2050

World seaborne trade: tonne-miles

Average growth of 2.3%/yr to 2030, then 0.3%/yr towards 2050

Are we really moving in this direction? And at what speed?

- 1. World fleet CO₂ emissions
- Slight increase in CO₂ emissions in recent years

2. Alternative fuels uptake

- 0.3% uptake on ships in operation
- 6% for newbuildings

3. Regulation

 Current policy scenario will not meet the IMO ambitions without further policy

Trend in world fleet CO₂ emissions

Alternative fuel uptake (percentage of ships)⁶

cators

0

č

New 'CO₂ Barometer' signals shipping decarbonization is off course

- 1. World fleet CO₂ emissions
- Slight increase in CO₂ emissions in recent years

2. Alternative fuels uptake

- 0.3% uptake on ships in operation
- 6% for newbuildings

3. Regulation

 Current policy scenario will not meet the IMO ambitions without further policy

The **CO₂ Barometer** provides a high-level decarbonization status in the form of a **`transition pressure level**'

cators

Decarbonization options for shipping

- Significant GHG reduction can be achieved by technical and operational measures
- Up to 100% GHG reduction can only be achieved with alternative fuels. Barriers to implementation includes:
 - Cost
 - Availability and infrastructure
 - Onboard storage

The Alternative Fuel Barrier Dashboard: Indicative status of key barriers for selected alternative fuels

Alternative fuels must evolve over time to increase marked penetration

Time

It took LNG around 20 years to climb all steps. To reach the IMO targets, carbon-neutral fuels must mature faster!

Fuel flexibility and bridging technologies – the three pillars

Bridging technologies can facilitate the transition from traditional fuels, via fuels with lower carbon footprints, to carbon-neutral fuels

Pathway model: We explore the impact of specific GHG regulations

Regulatory input to the model: Three different policy designs

What would happen if **no further decarbonization policies** are put in place? 2 What is the effect of stricter operational requirements?

3 What if main focus is on stricter **design requirements**?

CO₂ emissions towards 2050 in the 'design requirements' pathway

Both the **design** and **operational** focused regulatory pathways fulfill the IMO ambitions:

- New fuels, alongside energy efficiency, will play a key role.
- Carbon-neutral fuels
 need to supply 30%–
 40% of the total energy
 in 2050.

The "Current policy" pathway **is not** fulfilling the IMO ambitions.

Units: CO₂ emissions (Mt)

Fuel mix towards 2050 in the 'design requirements' pathway

In all three pathways modelled, liquefied methane (both fossil and non-fossil) ends up dominating the fuel mix.

Several ways to meet the IMO targets – Impact on Newbuilding

Focusing on **operational requirements**, the uptake of alternative fuel for newbuildings is more gradual If main focus is on **design requirements**, the shift in fuel and fuel-converter technology on newbuildings is very abrupt

LNG play an important role - transition to carbon neutral fuels will be needed

14 DNV GL © 2019

Key findings

- World seaborne trade will grow gas will grow more
- Shipping decarbonization is off course
- Uptake of alternative fuels is picking up, but needs to breakthrough to the large ocean going ships
 - In addition to LNG, carbon-neutral fuels will be needed towards 2050
 - Bridging technologies and fuel flexibility can smooth the transition from traditional fuels
- Ships should be future proof in a changing environment, securing competitiveness and mitigating carbon risk
- We have tools to support policy makers, ship owners and other stakeholders

Thank you for your attention

Anthony Teo

Anthony.Teo@dnvgl.com +1 281 396 1507

Energy Transition Outlook – Report / Premium Analytics

https://eto.dnvgl.com/2019/index.html#ETO2019-top

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

